1.3 Physical and Chemical Properties

The characteristics that enable us to distinguish one substance from another are called properties. A physical property is a characteristic of matter that is not associated with a change in its chemical composition. Familiar examples of physical properties include density, color, hardness, melting and boiling points, and electrical conductivity. We can observe some physical properties, such as density and color, without changing the physical state of the matter observed. Other physical properties, such as the melting temperature of iron or the freezing temperature of water, can only be observed as matter undergoes a physical change. A physical change is a change in the state or properties of matter without any accompanying change in its chemical composition (the identities of the substances contained in the matter). We observe a physical change when wax melts, when sugar dissolves in coffee, and when steam condenses into liquid water (Figure 1.3.1). Other examples of physical changes include magnetizing and demagnetizing metals (as is done with common antitheft security tags) and grinding solids into powders (which can sometimes yield noticeable changes in color). In each of these examples, there is a change in the physical state, form, or properties of the substance, but no change in its chemical composition.

Figure A is a photograph of butter melting in a pot on a stove. Figure B is a photograph of something being heated on a stove in a pot. Water droplets are forming on the underside of a glass cover that has been placed over the pot.

The change of one type of matter into another type (or the inability to change) is a chemical property. Examples of chemical properties include flammability, toxicity, acidity, reactivity (many types), and heat of combustion. Iron, for example, combines with oxygen in the presence of water to form rust; chromium does not oxidize (Figure 1.3.2). Nitroglycerin is very dangerous because it explodes easily; neon poses almost no hazard because it is very unreactive.

Figure A is a photo of metal machinery that is now mostly covered with reddish orange rust. Figure B shows the silver colored chrome parts of a motorcycle. One of the parts is so shiny that you can see a reflection of the surrounding street and buildings.

A chemical change always produces one or more types of matter that differ from the matter present before the change. The formation of rust is a chemical change because rust is a different kind of matter than the iron, oxygen, and water present before the rust formed. The explosion of nitroglycerin is a chemical change because the gases produced are very different kinds of matter from the original substance. Other examples of chemical changes include reactions that are performed in a lab (such as copper reacting with nitric acid), all forms of combustion (burning), and food being cooked, digested, or rotting (Figure 1.3.3).

Figure A is a photo of the flask containing a blue liquid. Several strands of brownish copper are immersed into the blue liquid. There is a brownish gas rising from the liquid and filling the upper part of the flask. Figure B shows a burning match. Figure C shows red meat being cooked in a pan. Figure D shows a small bunch of yellow bananas that have many black spots.

Properties of matter fall into one of two categories. If the property depends on the amount of matter present, it is an extensive property. The mass and volume of a substance are examples of extensive properties; for instance, a gallon of milk has a larger mass and volume than a cup of milk. The value of an extensive property is directly proportional to the amount of matter in question. If the property of a sample of matter does not depend on the amount of matter present, it is an intensive property. Temperature is an example of an intensive property. If the gallon and cup of milk are each at 20 °C (room temperature), when they are combined, the temperature remains at 20 °C. As another example, consider the distinct but related properties of heat and temperature. A drop of hot cooking oil spattered on your arm causes brief, minor discomfort, whereas a pot of hot oil yields severe burns. Both the drop and the pot of oil are at the same temperature (an intensive property), but the pot clearly contains much more heat (extensive property).

While many elements differ dramatically in their chemical and physical properties, some elements have similar properties. We can identify sets of elements that exhibit common behaviors. For example, many elements conduct heat and electricity well, whereas others are poor conductors. These properties can be used to sort the elements into three classes: metals (elements that conduct well), nonmetals (elements that conduct poorly), and metalloids (elements that have properties of both metals and nonmetals).

The periodic table is a table of elements that places elements with similar properties close together (Figure 1.3.4). You will learn more about the periodic table as you continue your study of chemistry.

On this depiction of the periodic table, the metals are indicated with a yellow color and dominate the left two thirds of the periodic table. The nonmetals are colored peach and are largely confined to the upper right area of the table, with the exception of hydrogen, H, which is located in the extreme <a href=upper left of the table. The metalloids are colored purple and form a diagonal border between the metal and nonmetal areas of the table. Group 13 contains both metals and metalloids. Group 17 contains both nonmetals and metalloids. Groups 14 through 16 contain at least one representative of a metal, a metalloid, and a nonmetal. A key shows that, at room temperature, metals are solids, metalloids are liquids, and nonmetals are gases." width="850" />

Key Concepts and Summary

All substances have distinct physical and chemical properties, and may undergo physical or chemical changes. Physical properties, such as hardness and boiling point, and physical changes, such as melting or freezing, do not involve a change in the composition of matter. Chemical properties, such flammability and acidity, and chemical changes, such as rusting, involve production of matter that differs from that present beforehand.

Measurable properties fall into one of two categories. Extensive properties depend on the amount of matter present, for example, the mass of gold. Intensive properties do not depend on the amount of matter present, for example, the density of gold. Heat is an example of an extensive property, and temperature is an example of an intensive property.

Try It

  1. Classify each of the following changes as physical or chemical:
    1. condensation of steam
    2. burning of gasoline
    3. souring of milk
    4. dissolving sugar in water
    5. melting of gold
    1. volume
    2. temperature
    3. humidity
    4. heat
    5. boiling point

    [reveal-answer q=”722402″]Show Solutions[/reveal-answer]
    [hidden-answer a=”722402″]

    1. The answers are as follows:
      1. physical
      2. chemical
      3. chemical
      4. physical
      5. physical
      See Chapter 1.3 Practice for additional problems related to Physical and Chemical Properties.

      Glossary

      chemical change: change producing a different kind of matter from the original kind of matter

      chemical property: behavior that is related to the change of one kind of matter into another kind of matter

      extensive property: property of a substance that depends on the amount of the substance

      intensive property: property of a substance that is independent of the amount of the substance

      physical change: change in the state or properties of matter that does not involve a change in its chemical composition

      physical property: characteristic of matter that is not associated with any change in its chemical composition

      Licenses and Attributions (Click to expand)

      CC licensed content, Shared previously

      • Chemistry 2e. Provided by: OpenStax. Located at: https://openstax.org/. License: CC BY: Attribution. License Terms: Access for free at https://openstax.org/books/chemistry-2e/pages/1-introduction

      All rights reserved content

      • Physical & Chemical Properties. Authored by: mstoriwhite. Located at: https://youtu.be/wyDwkFjP2L0. License: Other. License Terms: Standard YouTube License
      definition

      characteristic of matter that is not associated with any change in its chemical composition

      × Close definition

      change in the state or properties of matter that does not involve a change in its chemical composition

      × Close definition

      behavior that is related to the change of one kind of matter into another kind of matter

      × Close definition

      change producing a different kind of matter from the original kind of matter

      × Close definition

      property of a substance that depends on the amount of the substance

      × Close definition

      property of a substance that is independent of the amount of the substance

      × Close definition

      License

      Chemistry Fundamentals Copyright © by Dr. Julie Donnelly, Dr. Nicole Lapeyrouse, and Dr. Matthew Rex is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.